
Research Article 1

Novel Applications of Stochastic Global Optimization
Algorithms to the Shortest Common Superstring
Problem
TYLER GIALLANZA

Compiled February 17, 2016

The shortest common superstring problem aims to find a string with minimal length that contains every
string in a given set. This problem has various applications in the fields of DNA sequencing and data
compression. Because it is a max SNP-hard problem, with no polynomial time solution, in practice a
greedy algorithm is used to approximate a solution. Since the greedy algorithm is only guaranteed to ap-
proximate a solution that is 248% optimal, any algorithm that can approximate a solution shorter than the
greedy algorithm can is desirable. This research focused on implementing two stochastic optimization
algorithms with the goal of outperforming the greedy algorithm by achieving shorter solutions: first, a
random-sampling Metropolis-Hastings variant known as simulated annealing, and second, a genetic al-
gorithm. The results of testing both algorithms against the greedy algorithm on a set of several randomly
generated sample data showed, on average, that the genetic algorithm performed about 5% better than
the greedy algorithm. An inverse relationship between size of test data and relative performance of the
genetic algorithm was also witnessed, demonstrating the superiority of the genetic algorithm over the
greedy algorithm for small data sets.

1. INTRODUCTION

The shortest common superstring problem is a mathematical
problem that has applications in the fields of data compression
[1] and DNA sequencing [2] [3]. The formal definition of the
shortest common superstring (also known as the shortest com-
mon supersequence) can be broken into two parts. First, a string
sk is a superstring of sl if and only if sl appears entirely and
uninterrupted at some location within sk. Second, the shortest
common superstring of a set S = {s1, ..., sn} over the finite alpha-
bet Σ is the shortest string that is a superstring of every si ∈ S.
Since finding the shortest common supersequence of any set of
strings where Σ ≥ 2 has been proven to be NP complete (mean-
ing there is no deterministic polynomial time solution possible),
a brute force algorithm entails unreasonably long runtimes, and
thus is in practice impossible [4]. The preferred algorithm, in-
stead, is a greedy algorithm: this algorithm has the advantage
of a substantially faster runtime than brute force, but is merely
an approximation algorithm that is not guaranteed to converge
on the optimal solution.

The greedy algorithm is commonly used because of its de-
terministic nature, low runtime, and relative ease to program
[5][3]. The algorithm selects two strings si and sj from the list
S = {s1, ..., sn} such that the overlap of si and sj is greater than
the overlap of sk, sl ∈ S (for any k 6= i and l 6= j). si and sj thus
have the greatest overlap of any of the strings in S. The algo-
rithm then replaces si and sj with the newly formed overlapping

string. This is repeated until only one string is left; this string is
returned as the superstring.

The greedy algorithm has a much faster runtime than the
brute force algorithm, but it approximates to such a degree that
it is only guaranteed to produce a result that is within 248% of
the length of the optimal solution, meaning the result returned
by the greedy algorithm has the potential to be twice as long as
the actual shortest common superstring [6].

The primary goal of this research is to produce an algorithm
that can outperform the greedy algorithm, either on the basis of
physical runtime or on the basis of the length of the resulting
superstring. Any solution that either ran faster than the greedy
algorithm while producing comparable results or generated a
shorter superstring than the greedy algorithm was thus con-
sidered a successful solution. The greedy algorithm was used
as a benchmark because of its centrality in the literature; the
greedy algorithm is not only often used in practice, but also is
the focus of the most research in the field. Researched less often,
however, are the applications of non-deterministic algorithms to
the shortest common superstring problem.

This research focused on two non-deterministic algorithms,
the first of which is known as simulated annealing. Simulated an-
nealing is a specific type of non-deterministic algorithm known
as a stochastic global optimization algorithm. This means that
the algorithm uses some form of randomness in an attempt to
find a globally optimal solution to a problem, in this case the

Research Article 2

shortest common superstring problem. Simulated annealing
specifically goes about this in a manner similar to that of the
hill climbing algorithm. First, the algorithm picks a random
starting point. Next, it looks at a neighbor of that point. If the
neighbor results in a shorter superstring than the current point,
the neighbor will become the current point, and the algorithm
will continue neighbor to neighbor, improving as it goes along.
The issue with the hill climbing algorithm is its tendency to get
stuck in local optima (Figure 1).

Fig. 1. The hill climbing algorithm gets stuck in local optima.

Because the algorithm only moves to a neighboring point
if it is better than the current point, it has no way to escape a
locally optimal solution. Simulated annealing improves upon
this model by adding a probability of accepting a worse solution.
This allows the simulated annealing algorithm to escape from
local optima. At the start, there is a high probability of accepting
a bad solution, meaning the algorithm can easily escape locally
optimal solutions. As time goes on, however, the probability of
accepting a worse solution decreases, allowing the algorithm to
“lock in” on the globally optimal solution.

The second algorithm tested is a genetic algorithm. Genetic
algorithms, like simulated annealing, are stochastic global op-
timization algorithms. Genetic algorithms work by mimicking
the process of evolution, gradually selecting for the best solu-
tion. The genetic algorithm begins with a random population of
individuals. From here, the probability that each individual will
pass on their genetic material is determined based on fitness –
the fitter the individual, the more likely it will pass on its genetic
material to the next generation. Over time, the fitter individuals
begin exchanging genetic material, resulting in better and bet-
ter results as time goes on. Genetic variance is also introduced
through random mutations, which allows genetic algorithms to
escape from local optima as well.

Due to the non-deterministic nature of the two algorithms
tested, running each algorithm multiple times yields different
results. Therefore, parallel versions of both algorithms were also
tested, with multiple versions of the algorithm running simul-

taneously. This provides a large advantage to the genetic algo-
rithm especially because the different instances can exchange
information: if one instance finds a particularly promising so-
lution, it can pass that information along so the other instances
can use it as a starting point.

Stochastic global optimization algorithms were chosen for
their inherent parallelization and for the lack of research on
their applications to the shortest common superstring problem.
Because both algorithms have outperformed greedy algorithms
in other problems [7] [8], it was of particular interest whether or
not they would be able to do the same for the shortest common
superstring problem.

2. MATERIALS AND METHODS

A. Materials
The entirety of the research was conducted on an HP envy
Touchsmart 15 laptop with an Intel i7-4700mq processor and
8 GB of DDR3 RAM. The program was coded for in the Python
2.7 programming language, and was compiled by the 64 bit
PyPy compiler for Python 2.7 on Windows 10. Code was written
using the Vim text editor running on the Linux Mint 15 oper-
ating system. The code is attached in appendix A; the entirety
of the code is present, and every line was written solely by the
author of the paper.

B. Greedy Algorithm
For the purposes of running as a benchmark to test the other
algorithms against, a greedy algorithm was implemented. The
greedy algorithm was implemented based on that presented in
[9]; the implementation was designed to best reflect the standard
greedy algorithm that appears in the literature. In short, the
greedy algorithm operates by finding the two strings in the
list with the largest overlap. The algorithm then merges those
strings into one string, and repeats the process until only one
string remains (see Introduction for a more formal description).
A pseudocode outline is found in algorithm 1.

Algorithm 1. Greedy Algorithm

1: procedure GREEDY(strings)
2: while length(strings) > 1 do . Stop when only one

string is left
3: for i← 0, length(strings) do
4: for j← 0, length(strings) do
5: if strings[i] 6= strings[j] then
6: if overlap(strings[i], strings[j]) < record

then . Find the largest overlap between any two strings
7: record← overlap(strings[i], strings[j])
8: f irst← i
9: second← j

10: strings.remove(f irst)
11: strings.remove(second)
12: strings.add(record)
13: return strings[0]

C. Simulated Annealing
The simulated annealing algorithm operates by taking a directed
random walk through all the possible solutions to the input.
The first iteration begins by creating a random ordering of the
input strings. The fitness of each random ordering, a measure

Research Article 3

of how desirable that particular random solution is, is then
determined by calculating the length of the superstring created
by overlapping all adjacent strings. From this fitness measure,
it can be determined which random ordering is preferable; for
example, consider the following strings:

0 1 2

abba baaaa bbbabba

Two different strings orderings, such as {0, 1, 2} and {2, 0, 1},
yield different length strings:

{0, 1, 2} {2, 0, 1}

abba+baaaa+bbbabba bbbabb+abba+baaaa

abbaaaabbbabba bbbabbabaaaa

length: 14 length: 12

If the fitness of the current iteration is better than the fitness
of the previous iteration, the current ordering is a better solution
and it is thus saved as the value to beat (herein referred to as
the “saved value”). If the fitness of the current iteration is worse
than the fitness of the previous iteration, there is a probability
that it will still be chosen as the saved value. This probability is
based on two factors.

First, the difference in the fitnesses – this makes it much less
likely that a large setback is incurred. Second, the amount of
time that the algorithm has been running – this means bigger
risks will be taken when the algorithm first starts, but near the
end the algorithm will “zero in” on the best solution instead
of jumping around randomly to worse solutions. The rationale
behind sometimes choosing a worse solution is the genius of
the simulated annealing algorithm – by choosing a worse value
in the short term, the long term benefit is the ability to escape
local optima (see introduction). Finally, a neighbor of the saved
value is selected randomly, and the same process is repeated.
A neighbor is determined by randomly swapping two adjacent
strings in the saved value: by making such a relatively small
change, good solutions are conserved because merely swapping
two adjacent strings is a minute change that is unlikely to neg-
atively impact the solution too much. The process of selecting
a neighbor of the saved value, changing the saved value if a
better result is found, and repeating continues until a certain
number of iterations is reached, at which point the algorithm
returns the saved value as its solution. The pseudocode of the
implementation is outlined in algorithm 2.

Algorithm 2. Simulated Annealing

1: procedure SA(strings, tmax, tmin, σ)
2: t← tmax
3: λ← rand(0, 1) . random function non-inclusive
4: saved_strings← rand_perm(strings) . gets a random

permutation of the string indices
5: while t ≥ tmin do
6: new_strings← rand_swap(saved_strings) . gets a

random shuffle of the saved strings
7: ∆← f itness(new_strings)− f itness(saved_strings)
8: if ∆ ≤ 0 or (∆ > 0 and rand(0, 1) ≤ e

−∆
t) then

9: saved_strings← new_strings
10: t← te

−λt
σ

11: return saved_strings

As previously mentioned, the probability of choosing a worse
solution decreases over time. This probability is represented as
a "temperature," or t, which is reduced by a factor of e

−λt
σ every

iteration. The use of this reduction factor is known as Boltzman
Annealing [10], and it was chosen because it is a conservative
solution that slowly reduces temperature; there are other re-
duction factors that are used, but they lower temperature more
quickly [11]. In the implementation, the value of σ was set to
0.09. Additionally, the value of tmax was set to 100, and the value
of tmin was set to 0.0005.

In its final implementation, the simulated annealing algo-
rithm was parallelized. This was accomplished simply by run-
ning multiple instances of the algorithm simultaneously and
selecting the result that was the best across all instances; because
simulated annealing conducts a random walk through the possi-
ble solutions, running multiple instances simultaneously simply
increases the likelihood that an optimal solution will be found
by covering more possible solutions.

D. Genetic Algorithm
A sequential version and a parallel version of a genetic algo-
rithm were implemented as well. The genetic algorithm follows
the basic outline patterned in the literature [12]: first, an initial
population is randomly generated. Next, the viability of each
solution is determined by a fitness function. Finally, various
genetic operations are applied to the initial population in order
to generate a new population of potentially fitter individuals.
The genetic operations are applied in proportion to the fitness
of each individual of the population; the idea is for fitter indi-
viduals to be more likely to pass their genetic material to the
next generation than non-fit individuals, mimicking the natural
process of evolution.

The fitness function implemented is modeled off of the rank
space method [13]. The rank space method is unique in that it
operates based on a relative ordering of individuals rather than
an absolute ranking; instead of using the actual fitness value of
each individual to determine the probability of reproduction, all
of the individuals are ranked in order of fitness and the rank is
used to determine the probability of reproduction. This subtle
difference yields large results; the relative ranking system does
not place as much value on fitness as does the absolute ranking
system, encouraging diversity of solutions and allowing the
algorithm to escape local optima.

In short, the fitness function ranks all of the individuals based
on fitness; the higher an individual is on this list, the more
likely it is to be picked for genetic operation, thus passing itself
on to future generations. In detail, a value Pc represents the
probability that the best individual is chosen. The chance that
each subsequent individual is chosen is reduced by a factor of Pc
such that the probability of the nth best solution being chosen is

(1− Pc)
n−1

In the implementation, Pc was set to 0.05 [12]. This means
that there was a 5% chance of the best individual being chosen,
a 4.75% chance of the second best individual being chosen (if
the first was not chosen), a 4.5125% chance of the third best
individual being chosen (if the first and second were not chosen),
and so on.

After the fitness function decides which individuals will sur-
vive into the next generation, the genetic operations are applied.
The genetic algorithm implemented utilizes three different ge-
netic operations: selection, crossover, and mutation. Of these,

Research Article 4

selection is the simplest. Selection simply means the current
individual is replicated in its entirety. The advantage of selection
is that very good solutions get conserved. If a solution is partic-
ularly good, it makes since that it should be copied into the next
generation. However, the drawback of selection is that in and
of itself it does not allow for diversity. The selection operation
doesn’t change anything; nothing is allowed to improve, which
undermines the purpose of evolution.

Crossover attempts to add diversity to the next generation.
In genetic crossover, information from two different individuals
is exchanged, creating two new children with some information
from each parent. The type of crossover implemented in this
algorithm is two point crossover. In Two point crossover, two
parents are chosen. Then, part of each parent is exchanged
with the other parent at a random location to form two children
(Figure 2).

Parent 1

0 1 2 3 4 5

a b c d e f

Parent 2

0 1 2 3 4 5

A B C D E F

Child 1

0 1 2 3 4 5

a B C D e f

Child 2

0 1 2 3 4 5

A B C d e f

Fig. 2. Two point genetic crossover with a length of 3. Child 1
is formed by crossing parent 2 into parent 1 at the indices 1, 2,
and 3. Child 2 is formed by crossing parent 1 into parent 2 at
the indices 0, 1, and 2. The crossover is "two point" because the
starting location is different in each parent.

Crossover has an advantage over selection because it in-
creases the diversity of the next generation. Each child is dif-
ferent from both parents, making it more probable that a new
solution will be found. The issue with crossover is the potential
of finding a worse solution – it is possible that the parts taken
from each parent combine poorly. However, just like genetic
crossover in the biological sense, it is far more likely that a good
solution will be found. Therefore, crossover is the “middle of the
road” genetic operator – it creates more diversity than selection,
but is less error-prone than the final operator: mutation.

Mutation is the most extreme of the genetic operators. As
the name implies, mutation randomly changes an individual
in the pursuit of diversity. The mutation implemented relies
on a localized shuffle of the original individual. Two random
numbers are generated: a start index, and an end index. Then,
every value between the start and end indices are randomly
shuffled. This was the chosen method because it has a more
moderate effect – only a small area of the individual is effected
rather than the entirety, causing small, incremental changes
rather than large, sporadic ones.

In combination, all three genetic operations work together
to ensure diversity as well as conservation of the best solutions.
As implemented, selection was used 10% of the time, crossover
was used 45% of the time, and mutation was used 45% of the
time [14]. The process of fitness selection and genetic operation
to generate the next generation continues for 800 generations,
where each generation has a population size of 50 individu-
als [12], and then the algorithm terminates, returning the best

individual of the most recent generation as its solution. The
pseudocode is as follows in Algorithm 3.

Algorithm 3. Sequential Genetic Algorithm

1: procedure GA(strings, gens, pop, Pselection, Pmutation, Pcrossover)
2: initialize current_gen with first generation
3: for i← 0, gens do
4: current_gen_ f itness← f itness(current_gen)
5: next_gen← sort_by_ f itness(current_gen, current_gen_ f itness)
6: current_gen.clear()
7: while j < pop do
8: if j < bPselection ∗ popc then
9: current_gen.add(selection(current_gen))

10: j← j + 1
11: else if j < bPmutaiton ∗ popc then
12: current_gen.add(mutation(current_gen))
13: j← j + 1
14: else
15: current_gen.add(crossover(current_gen))
16: j← j + 2
17: return next_gen[0]

As with simulated annealing, a parallel version of the genetic
algorithm was also implemented. This amounted to multiple in-
stances of the algorithm running, seeded with different starting
points. The added advantage of parallelizing a genetic algorithm
is the introduction of a new genetic operator: migration. Migra-
tion works across all running instances of the genetic algorithm.
Beforehand, a random generation is chosen to be the start of
the migration period. Once that generation is reached, every
ten generations two of the running instances exchange their top
performing individual (Figure 3).

Fig. 3. An example of migration starting at generation 37.

This allows all instances of the genetic algorithm to converge
on optimal solutions; if one of the instances has found a globally
optimal solution, it can share its results with the rest of the
instances. When all of the running instances have terminated,
the overall best solution is chosen and returned as the solution.

Research Article 5

3. RESULTS

The data were collected by compiling the attached code with
the PyPy 64-bit compiler for Python 2.7. Tests were run on
the Windows 10 operating system (see materials for machine
specifications). For both simulated annealing and the genetic
algorithm, two different tests were run. The first test used a
sample size of 10 randomly generated strings, each of a random
length between 10 and 20, and the second used a sample size of
20 randomly generated strings, also of a random length between
10 and 20 [15]. Each sample size was tested over 5 trials, and the
results of those trials were averaged.

Results are reported in terms of relative performance to the
greedy algorithm benchmark. For example, a score of 5% means
the tested algorithm produced a result 5% shorter than the
greedy algorithm.

Table 1. Genetic Algorithm Length Data (Average)

Strings Greedy Genetic Genetic Improvement

10 107 101 5.698%

20 207 198 4.4%

The data for the genetic algorithm demonstrate a 4.782%
improvement over the greedy algorithm, with the genetic algo-
rithm generating a shorter, or better, superstring in every trial.
This can be broken down into the results for 10 strings and 20
strings: when run on 20 strings, the improvement was 4.4%, and
when run on 10 strings the improvement was 5.698% (Table 1).

Table 2. Simulated Annealing Length Data (Average)

Strings Greedy SA SA Improvement

10 110 113 -11.82%

20 212 236 -2.95%

The data for the simulated annealing algorithm demonstrate
a -7.38% improvement over the greedy algorithm, with the sim-
ulated annealing algorithm generating a longer, or worse, su-
perstring in every trial. As with the genetic algorithm, this can
be broken into 10 string and 20 string results: the 20 string data
set showed a -11.82% improvement, and the 10 string data set
demonstrated a -2.95% improvement over the greedy algorithm
(Table 2).

Table 3. Timing Data (Average)

Strings Greedy(ms) Genetic(ms) SA(ms)

10 597 10439 3715

20 1133 23995 23768

Both the genetic algorithm and the simulated annealing al-
gorithm took far longer to run than the greedy algorithm. On
average, the genetic algorithm took 28.2 times as long to run,
and the simulated annealing algorithm took 24.7 times as long
to run (Table 3).

4. DISCUSSION

Much of the work conducted was aimed at improving the results
of the genetic algorithm. As a result, the algorithm underwent a
variety of iterations, but the majority of the improvements can
be separated into three distinct versions.

In the first version, the initial population was randomly gen-
erated from a solution space that includes all strings of a viable
length, even strings that are not valid superstrings. Since the
actual input strings tested were in binary, each individual was
simply a random binary number. This solution was based off
of the common method outlined in the literature [16]. However,
the obvious issue with this representation scheme is that only a
small minority of all strings are valid superstrings for a given
data set; by including all strings, the solution space increased
substantially. Additionally, the crossover and mutation genetic
operations introduced the possibility of yielding an invalid su-
perstring.

The second version fixed the representation issue by gen-
erating a random ordering of the input strings rather than an
entirely random string. The rationale behind this decision is that
every superstring can be represented as some ordering of the in-
put strings that are overlapped. This is the same representation
scheme used in the simulated annealing algorithm (see Materials
and Methods, subsection C). Although this new version takes
longer to run because it has to overlap all of the input strings
in order to find the superstring, it is much preferable because
it generates valid superstrings. Additionally, this version fixed
the crossover and mutation genetic operations. Both operations
were modified to ensure that each new string ordering has one
and only one copy of each string: crossover gets re-run if any
duplicates are found, and mutation is a localized shuffle (see
Materials and Methods, subsection D). This version improved
substantially on the first version, but it was still imperfect – it
generated results comparable to the greedy algorithm, but rarely
produced shorter strings.

The third and final version fixed this issue by seeding the
genetic algorithm with the greedy algorithm. This means that
instead of starting with a random ordering of strings, the genetic
algorithm starts with the ordering of strings generated by the
greedy algorithm. In other words, the result from the greedy
algorithm is “fed in” to the genetic algorithm for further im-
provement. The rationale behind this is that there is no reason
for the genetic algorithm to start from scratch if it can instead
start with the results of the greedy algorithm. The genetic algo-
rithm, then, functions as a heuristic optimization to the greedy
algorithm – the advantage of this is that if in the future someone
comes up with a major improvement to the greedy algorithm,
the genetic algorithm will improve as well.

The final version of the genetic algorithm, ran in parallel,
ended up, on average, outperforming the greedy algorithm, gen-
erating superstrings 4.782% shorter than the greedy algorithm.
The simulated annealing algorithm, on the other hand, gener-
ated superstrings 7% longer than the greedy algorithm. As such,
the genetic algorithm is considered a viable alternative to the
greedy algorithm, but the simulated annealing algorithm is not.

Additionally, the genetic algorithm incurred better perfor-
mance with smaller data sets. The average improvement for the
data set with 20 strings was 4.4%, and the average improvement
for the data set with 10 strings was 5.698%; this suggests that the
genetic algorithm is especially viable for smaller data sets.

Despite generating shorter superstrings than the greedy al-
gorithm, the genetic algorithm will most likely not replace the

Research Article 6

greedy algorithm in implementation. This is primarily due to
the long time required to run the genetic algorithm; it took, on
average, 28.2 times as long to run as did the greedy algorithm.
Additionally, even though the genetic algorithm outperformed
the greedy algorithm in every case tested, the stochastic nature
of the algorithm means that it is possible, if not likely, that the ge-
netic algorithm could generate a solution worse than the greedy
algorithm. The deterministic nature of the greedy algorithm
makes it predictable – that kind of stability is often desired in
real-world applications like data compression.

Even though the genetic algorithm will not likely replace
the greedy algorithm in practice, this research has generated
many improvements that are of interest to future research. First
of all, the design of the genetic algorithm offers a few unique
approaches not found elsewhere in the literature. Specifically,
the data representation scheme (using string orderings instead
of directly generating random binary strings), and the genetic
operations (using a localized shuffle method for mutation to
preserve the superstring property of the data and using a “safe”
two-point crossover that also preserves the superstring property)
can be implemented in future genetic and evolutionary solutions
to the shortest common superstring problem and other related
problems. Additionally, parallelism can help to overcome the
large time requirement of the genetic algorithm. This research
was conducted on a processor with 8 logical cores; by using more
parallelized hardware, for example graphics cards, the genetic
algorithm can be reduced down to similar times as the greedy
algorithm.

The goal of this research was to develop an algorithm that
could either produce a shorter superstring than the greedy al-
gorithm or produce the same length superstring as the greedy
algorithm in less time. In the end, the most important aspect
of the research was the genetic algorithm. Various modifica-
tions were made that make the genetic algorithm feasible for
solving the shortest common superstring problem. The genetic
algorithm did generate a shorter superstring than the greedy
algorithm on average, making it a success. If the time can be
reduced, it is possible that the modifications and improvements
made to the genetic algorithm will allow it to replace the greedy
algorithm as the de-facto standard solution to the shortest com-
mon superstring problem.

REFERENCES

1. E. Schreiber and R. Korf, “Using partitions and superstrings for lossless
compression of pattern databases,” in “Twenty-Fifth AAAI Conference
on Artificial Intelligence,” , vol. 25 (2011), vol. 25.

2. P. Pevzner, Computational Molecular Biology: An Algorithmic Approach
(MIT Press, 2000).

3. M. Tammi, “The principles of shotgun sequencing and automated frag-
ment assembly,” Center for Genomics and Bioinformatics, Karolinska
Institutet (2003).

4. K. Raiha and E. Ukkonen, “The shortest common supersequence prob-
lem over binary alphabet is np-complete.” Theoretical Computer Science
16, 187–98 (1981).

5. B. Ma, “Why greed works for shortest common superstring problem,”
Theoretical Computer Science 410, 5374–5381 (2009).

6. A. Golovnev, A. Kulikov, and I. Mihajlin, “Approximating shortest su-
perstring problem using de bruijn graphs,” in “Combinatorial Pattern
Matching,” (Springer, 2013), pp. 120–129.

7. M. Dorigo and L. Gambardella, “Ant colony system: a cooperative
learning approach to the traveling salesman problem,” Evolutionary
Computation 1, 53–66 (2002).

8. D. Zhao, W. Xiong, and Z. Shu, “Simulated annealing with a hybrid

local search for solving the traveling salesman problem,” Journal of
Computational and Theoretical Nanoscience 12, 1165–1169 (2015).

9. A. Frieze and W. Szpankowski, “Greedy algorithms for the shortest
common superstring that are asymptotically optimal,” Algorithmica 21,
21–36 (1998).

10. D. Johnson, C. Aragon, L. McGeoch, and V. Schevon, “Optimization
by simulated annealing: An experimental evaluation; part i, graph par-
titioning,” Association for Computing Machinery: Operations Research
37, 865–892 (1989).

11. L. Ingber, “Very fast simulated re-annealing,” Mathematical and Com-
puter Modelling 12, 967–973 (1989).

12. L. Ingber and B. Rosen, “Genetic algorithms and very fast simulated
reannealing: A comparison,” Mathematical and Computer Modelling 16,
87–100 (1992).

13. A. Eiben, Theoretical Aspects of Evolutionary Computing (Springer
Science and Business Media, 2013), chap. Evolutionary Algorithms and
Constraint Satisfaction: Definitions, Survey, Methodology, and Research
Directions.

14. P. Russell and P. Norvig, Artificial Intelligence: A Modern Approach
(Prentice Hall, 2009), 2nd ed.

15. X. Liu, “Sequential and parallel algorithms for the shortest common
superstring problem,” Parallel Numerics pp. 97–107 (2005).

16. R. Parsons, S. Forrest, and C. Burks, “Genetic algorithms for dna
sequence assembly,” in “International Conference on Intelligent Systems
for Molecular Biology,” , vol. 1 (1993), vol. 1, pp. 310–318.

	Introduction
	Materials and Methods
	Materials
	Greedy Algorithm
	Simulated Annealing
	Genetic Algorithm

	Results
	Discussion

